Oxyfuel Combustion Technology

Official Opening of the OxyCoal™ Clean Combustion Test Facility
Technical Seminar

David Sturgeon
Date: 24 July 2009

Contents

• Air Firing Technology vs. Oxyfuel Firing Technology
• Doosan Babcock’s Oxyfuel Combustion Technology Roadmap (Past & Present)
• OxyCoal-UK: Phase 1 – Fundamentals and Underpinning Technologies
• OxyCoal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System
• Optimised OxyCoal Combustion
• Impact of High Concentrations of SO₂ and SO₃ in Carbon Capture Applications and Mitigation
• Oxyfuel Combustion Technology Commercialisation
• Doosan Babcock’s Oxyfuel Combustion Technology Roadmap (Present & Future)
Air Firing Technology

Pulverised fuel combustion under air firing operation produces a flue gas CO$_2$ concentration of typically 15%v/v dry basis.

Oxyfuel Firing Technology

Pulverised fuel combustion under oxyfuel firing operation produces a flue gas CO$_2$ concentration of typically >75%v/v dry basis.
Air Firing Technology vs. Oxyfuel Firing Technology

Pulverised fuel combustion under oxyfuel firing operation produces a flue gas that requires minimal treatment prior to storage.

Doosan Babcock’s Oxyfuel Combustion Technology Roadmap

For over 15 years, we have been a leading player in the development of low carbon technology.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulverised Coal Combustion System for CO₂ Capture</td>
<td>Oxy Combustion Processes for CO₂ Capture from Power Plant</td>
<td>CO₂ Capture Ready Power Plants</td>
<td>OxyCoal-UK: Phase 1 – Fundamentals and Underpinning Technologies</td>
<td>OxyCoal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System</td>
</tr>
<tr>
<td>Pulverised Coal Combustion System for CO₂ Capture</td>
<td>Development and Experimental Validation of a Mathematical Modelling Methodology for Oxy-Fuel Combustion for CO₂ Capture in Large Power Plants</td>
<td>Enhanced Capture of CO₂</td>
<td>Enhanced Capture of CO₂</td>
<td>Future CO₂ Capture Options for the Canadian Market</td>
</tr>
<tr>
<td>Pulverised Coal Combustion System for CO₂ Capture</td>
<td>Oxy Coal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System</td>
<td>Future CO₂ Capture Options for the Canadian Market</td>
<td>Coal-Fired Advanced Supercritical Retrofit with CO₂ Capture</td>
<td>Coal-Fired Advanced Supercritical Retrofit with CO₂ Capture</td>
</tr>
</tbody>
</table>
The OxyCoal-UK: Phase 1 collaborative project addressed critical technology gaps and was led by Doosan Babcock and supported by the Technology Strategy Board.

- **Combustion Fundamentals**
 - Characterisation of coal ignition, devolatilisation, char burnout and nitrogen partitioning behaviour under oxyfuel firing conditions.
 - Development of kinetic parameters from test data and application in CFD models of OxyCoal™ burner and oxyfuel boiler.

- **Furnace Design and Operation**
 - Investigation of the performance of the oxyfuel process and its key impacts on utility plant operation and performance.

- **Flue Gas Clean-Up**
 - Development and testing of novel flue gas clean-up system for NOx and SO2 removal from oxyfuel derived flue gas.

- **Generic Process Issues**
 - A desktop study to investigate the key process issues associated with an oxyfuel installation on a large utility plant.
OxyCoal-UK: Phase 1 – Fundamentals and Underpinning Technologies

Pilot-scale testing of the oxyfuel combustion process on Doosan Babcock’s 160kWt Emissions Reduction Test Facility (ERTF).

OxyCoal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System

The OxyCoal-UK: Phase 2 collaborative project is led by Doosan Babcock and supported by the Department of Energy and Climate Change.
OxyCoal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System

During Summer 2009, Doosan Babcock Energy has commenced its 40MW, OxyCoal™ demonstration, the world’s largest demonstration of an oxyfuel combustion system.

• Demonstrate operational envelope of the OxyCoal™ burner
 – Flame stability
 – Turndown
 – Start-up
 – Shutdown
 – Transition between air and oxyfuel firing

• Demonstrate successful performance of the OxyCoal™ burner
 – Flame stability
 – Flame shape
 – Furnace heat transfer characteristics
 – NOx
 – Carbon in ash

Testing a burner of the type and size applicable to new build and retrofit coal-fired boilers.
OxyCoal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System

Full-scale testing of the oxyfuel combustion process on Doosan Babcock’s 90MWt Clean Combustion Test Facility (CCTF).

- Start-Up / Light-Up
- Air Heavy Fuel Oil Firing
- Air Coal Firing
- Transition
- OxyCoal Firing
- Shutdown

- Heavy Fuel Oil
 - 3000 litres
- Kellingley Coal
 - up to 50 tonnes
- Liquid Oxygen
 - up to 100 tonnes

Optimised OxyCoal Combustion

The Optimised OxyCoal Combustion project is led by Doosan Babcock in collaboration with Air Products and is supported by the Technology Strategy Board.

- Investigate advanced oxyfuel burner concepts, using mathematical modelling, to exploit the potential of the oxyfuel process (efficiency, fuel flexibility).
- Define burner designs suitable for full scale testing and commercial exploitation.
Impact of High Concentrations of SO2 and SO3 in Carbon Capture Applications and Mitigation

The OxySOX collaborative project is led by Doosan Babcock and supported by the Technology Strategy Board.

- Establish the impact of oxyfuel firing on SO2/SO3 and mercury behaviour.
- Determine the performance of in-furnace and post-combustion SO3 sorbent injection under air firing and oxyfuel firing conditions.
- Establish a predictive capability for SO3 sorbent injection and mercury behaviour in oxyfuel firing conditions.
- Determine the impact of oxyfuel firing conditions on fireside corrosion and low temperature corrosion.

Doosan Babcock’s Oxyfuel Combustion Roadmap

Through our investment in R&D we continually look for innovative ways to create a low carbon future.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OxyCoal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System</td>
<td>Optimisation of Oxyfuel PF Power Plant for Transient Behaviour</td>
<td>Impact of High Concentrations of SO2 and SO3 in Carbon Capture Applications and Mitigation</td>
<td>Front End Engineering Design Studies</td>
<td>1000MW Oxyfuel Power Plant</td>
</tr>
<tr>
<td></td>
<td>Optimised OxyCoal Combustion</td>
<td></td>
<td>100 to 250MW Oxyfuel Demonstration Power Plants</td>
<td>Commercialisation</td>
</tr>
</tbody>
</table>

E.ON Combustion Test Facility
Concluding Remarks

Doosan Babcock is developing the capability to provide competitive oxyfuel firing technology suitable for full plant application post-2010.

• Doosan Babcock has established a dedicated Carbon Capture Business Group to commercialise Carbon Capture technologies.

• We are undertaking a front end engineering design (FEED) study for a utility client for a 100MWe oxyfuel power plant.

• We aim to design, supply and construct an oxyfuel power plant of similar scale that will be operational by 2015, and a 1000MWe oxyfuel power plant by 2020.

Commercial Contact Details

Doosan Babcock is committed to delivering unique and advanced carbon capture solutions.

Mark Bryant
Director Carbon Capture
Doosan Babcock Energy,
Porterfield Road,
RENFREW.
PA4 8DJ
T +44 (0)141 886 4141
D +44 (0)141 885 3572
E mbryant@doosanbabcock.com

Peter Holland-Lloyd
Business Development Manager
Doosan Babcock Energy,
Porterfield Road,
RENFREW.
PA4 8DJ
T +44 (0)141 886 4141
D +44(0)141 885
E pholland-lloyd@doosanbabcock.com