Agenda

ENOS in short

ENOS sites

Demonstrating key technologies

Engaging Researchers with local population

Supporting deployment
ENOS IN SHORT
Need for CCS onshore

- EU commitment of an overall reduction of greenhouse gas emissions of at least 80% by 2050
- This means storing 3 to 13 billion tonnes of CO$_2$ across Europe by 2050
- Europe cannot rely solely on the North Sea, despite its great and readily available storage potential.
- Need onshore storage, relatively near the emission points, to reduce the costs of CCS, enable territories to manage their CO$_2$ emissions locally, and build lasting public confidence in CCS as a mitigation option that can also contribute to local economic development.
- To reach ambitious goal of greenhouse gas emission reduction, while ensuring the security, flexibility and competitiveness of energy supply, deployment of onshore CO$_2$ storage will be crucial.
Enabling CO$_2$ storage onshore in Europe

By building on past experiences and national initiatives to support CCS

By developing and field testing key technologies adapted to onshore applications;

By engaging the local population in the storage research and projects, without which project development is impossible.

By Creating a favourable environment for onshore storage across Europe:

- support knowledge sharing to maximise the benefits of site demonstrations,
- integrate research results and creating best practices from real-life experiments,
- support preparation of new pilot projects and upscaling to demonstration,
- bring innovation to society through dialogue and communication,
- promote CCS through training and education.
Developing and field testing key technologies

- Demonstrating through practical experience that injection operations can be run safely and efficiently onshore, which is key for optimising operations and to enable a positive regulatory environment;

- Ensuring that estimated matched storage capacities are sufficiently reliable and also affordable to verify, which is needed to enable investment in projects and therefore the deployment of CCS;

- Demonstrating our capacity to understand, detect and manage potential leakage risks, which is key for regulatory issues and to demonstrate storage is environmentally sound and safe for human health;

- Integrating CO₂ storage into the local economic activities so that the benefits are also reflected at the local scale, which is vital to enable the deployment of CCS;
Project Fact Sheet

29 Partners (parties and third parties) in 17 countries:

<table>
<thead>
<tr>
<th>Europe: CO2GeoNet</th>
<th>Italy: NHAZCA, OGS*, Sapienza University of Rome*, Sotacarbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria: GBA*</td>
<td>Norway: IRIS*</td>
</tr>
<tr>
<td>Belgium: GSB-RBINS*</td>
<td>Romania: GeoEcoMar*</td>
</tr>
<tr>
<td>Croatia: UNIZG-RGNF*</td>
<td>Slovakia: SGUDS</td>
</tr>
<tr>
<td>Czech Republic: Czech Geological Survey*</td>
<td>Slovakia: GEOINZ*</td>
</tr>
<tr>
<td>Denmark: GEUS*</td>
<td>Spain: CIEMAT, CIUDEN*, IGME*</td>
</tr>
<tr>
<td>Estonia: TTUGI*</td>
<td>The Netherlands: TNO*</td>
</tr>
<tr>
<td>France: BRGM* (Coordinator), Flodim, Geogreen, IDIL</td>
<td>Turkey: METU-PAL*</td>
</tr>
<tr>
<td>Germany: BGR*</td>
<td>UK: BGS*, Heriot Watt University*, Silixa, University of Nottingham</td>
</tr>
</tbody>
</table>

Duration: September 2016 – August 2020

Budget: 12.5 M€ of EC contribution. National funding supporting infrastructure development.
ENOS SITES
Working on actual sites

Leakage simulation:
- GeoEnergy Testbed
- Sulcis fault lab

Pilot CO₂ storage:
- Hontomin

Pre injection studies:
- Q16 maas
- LBR 1

26.04.2018
Hontomín Technology Development Plant, Spain

Unique onshore pilot injection site in the EU, recognized by the European Parliament as a key test facility (E.P. Resolution 2014)

Deep saline aquifer comprised of fractured carbonates with low porous matrix permeability

Injection well (HI) and observation well (HA) reaching the depth of 1600 m

Well monitoring (P/T sensors, deep sampling, DTS, DAS, ERT and hydrophone array)

In ENOS: Test of different injection schemes, iDAS-VSP, deep sampler,

Development of monitoring data integration solutions and alert systems
The UK GeoEnergy Test Bed (GTB)

The GTB is a research facility initiated by the British Geological Survey and the University of Nottingham comprising an instrumented borehole array (depth c. 200m)

The GTB will:

- **Improve understanding** of impacts and processes in the shallow subsurface
- Enable development and testing of **in innovative monitoring technologies**
- Provide ground truthing for advanced simulation software

For **ENOS**, the GTB will be used to advance innovative monitoring technologies and techniques for detection of fluid migration in the shallow subsurface and leakage

The GTB site represents a £6M investment to support new and emergent geo-energy sectors critical for a sustainable energy future (including £2.5M UK government-funding through the ERA project)
Field laboratories – Sulcis Fault Lab (SFL)

CO₂ will be injected into a fault zone (depth c. 250-300 m) to better understand impacts of CO₂ leakage.

SFL will test the sensitivity and effectiveness of monitoring technologies and techniques designed and developed by ENOS partners.

SFL infrastructure is **funded by Sardinian Region and National funds** – (Center of Excellence for Clean Energy and Research on Electric System)

The SFL project has multiple purposes:

- **Study CO₂ migration through faults**;
- **Examine water-gas-rock interactions including potential changes of groundwater quality**;
- **Study behaviour & changes in rock / fault parameters** by monitoring micro-seismicity and technical rock characteristics;
- **Test geochemical and geophysical monitoring tools** (in-house manufactured and low cost CO₂ sensors)
- Develop a **robust groundwater monitoring strategy**
LBr-1, Czech Republic

Depleted hydrocarbon field in the Czech part of the Vienna Basin, produced mainly in the 1960s

Tertiary sandstones at ca. 1100 m depth

Planned ENOS activities:

• Assessment of leakage risks through abandoned wells and faults, including possible shallow groundwater contamination

• Scenarios for CO$_2$-driven Enhanced Oil Recovery (CO$_2$-EOR) and its integration with CO$_2$ storage

• Study on regional CO$_2$-EOR potential of the Vienna Basin

26.04.2018
Q16-Maas, the Netherlands

Condensate-rich gas field in Triassic sandstone reservoir

Production started in April 2014, finished end of 2019

ROAD project with enhanced recovery and storage: Cancelled!

Potential for seasonal buffering after primary production

Support seasonal CO₂ buffering concept for use in greenhouses

- To make efficient use of waste CO₂: match supply and demand
- Support geothermal energy development in horticulture sector
- Decrease use of CHP installations

Stakeholder: OCAP transports CO₂ to greenhouses by pipeline

- Technical and economic feasibility
- Involvement of citizens; public engagement
- Roadmap for buffer implementation

Storage Location
Q16-Maas
Depth: -2 500 m
Storage capacity: 2-4 Mt
DEMONSTRATING KEY TECHNOLOGIES
Ensuring safe storage operation

Objective: Demonstrate safe and environmentally sound injection management by:

- Testing **injection strategies**
- Providing tools for injection and reservoir **monitoring**
- Providing monitoring data integration solutions and **alert systems**

Expected outcomes:

- History matching for site conformance
- Cost-effective injection strategies in a tight fractured reservoir
- Mitigation techniques and reduction of uncertainties for induced seismicity
- Reservoir monitoring tools (Validation of Silixa’s IDAS as part of a 3D seismic survey, Deep sampler)
- Development of Workflow to integrate operation, monitoring and modelling data into risk management and alert system
Ensuring storage capacities and cost-effective characterization

Further investigate potentialities of next-generation ‘high resolution’ reservoir modelling to assess impact of heterogeneities on CO₂ storage capacities;

Quantify the reliability of storage capacities estimates by developing A reliability index for capacity assessment;

Lower characterisation costs through (i) the validation of methodology to optimise exploration program, and (ii) the development of front-end engineering study for low cost drilling.
Managing leakage risks for protection of the environment and groundwater

Advance and validate surface and downhole monitoring technologies relevant to onshore storage, including for groundwater protection

Improve understanding on the impacts of leakage and of potential leakage pathways (geological faults and boreholes) to enable a more effective monitoring strategy

Produce best-practice guidelines for a monitoring strategy that integrates the newly advanced ENOS technologies and techniques with state-of-the-art commercially available tools

Real-life experience from field laboratories and sites where CO$_2$ is naturally seeping to the surface used to realise these aims (and data made available for future research)
Integration of CO₂ storage with local economic activities

Creating incentives and local benefits for CCS and demonstrating value of CO₂ by integrating storage technology with other activities,

Seasonal buffering in Q16-Maas, the Netherlands
 - Technical design of buffer chain and assessment of operational conditions
 - Assessment of contamination of CO₂ in reservoir prior to back-production
 - Design of cleaning facilities; removal of impurities for use in greenhouses
 - Economic viability of buffering compared to other forms of CO₂ supply

CO₂-EOR design for the LBr-1 oil field
 - Optimize the design for maximum CO₂ storage without impacting oil production
 - Economic viability of CO₂-EOR in Europe
ENGAGING RESEARCHERS WITH LOCAL POPULATION
Engaging with local communities

Finding solutions together: direct input of the population in making sense of the technology

Systematic exploration of technical challenges together with members of the public to identify the “good conditions” for onshore storage

Listening to all points of view: collaboration with citizens and stakeholders for producing socially sensitive best practices

Public info tool: a communication infrastructure for storage pilots
Planned work

- Establishing communication channels between researchers and citizens and developing a common language.
- Setting up of citizen groups in 4 areas (Hontomin, Sulcis, Nottingham, Rotterdam) with locally tailored approach.
- During two years, interacting with citizens on CO₂ storage research development
- Integrating social aspects and citizens’ input in best practice documents
- Develop an online information tool to improve accessibility to CO₂ storage research information
SUPPORTING DEPLOYMENT
International Collaboration

- Site twinnings (等相关)
- Leakage simulation Alliance (等相关)
- Experience sharing workshops on specific topics open to all
 (tomorrow 14:00 advanced characterisation techniques)
- Establishing contacts with European initiatives

26.04.2018
Preparing for future projects

- Identification of **storage pilot opportunities** in Europe,
- Planning of further **development** of ENOS sites
- **Roadmap** for identified synergies for CO₂ storage and CO₂ utilisation
Capacity building

- Intensive training weeks for early career scientists (once a year)
- Building of an international master degree in CO₂ storage
- E-lectures for the general (but interested) public

(available online)
Interactive tailoring of project outcomes for target audiences

Best practices for onshore storage in Europe

ENOS project team

R&D

Authorities

End-User Committee

Developments
Demonstrations

Feedback

Industry

NGO’s, public

26.04.2018
For information please contact enos@brgm.fr
visit www.enos-project.eu to get access to all events, documents and results.