The companies in which Royal Dutch Shell plc directly or indirectly owns investments are separate entities. In this presentation the expressions “Shell”, “Group” and “Shell Group” are sometimes used for convenience where references are made to Group companies in general. Likewise the words “we”, “us” and “our” are also used to refer to Group companies in general or those who work for them. The expressions are also used where there is no purpose in identifying specific companies.

The information contained in this presentation contains forward-looking statements, that are subject to risk factors which may affect the outcome of the matters covered. None of Shell International B.V., any other Shell company and their respective officers, employees and agents represents the accuracy or completeness of the information set forth in this presentation and none of the foregoing shall be liable for any loss, cost, expense or damage (whether arising from negligence or otherwise) relating to the use of such information.

All copyright and other (intellectual property) rights in all text, images and other information contained in this presentation are the property of Shell International B.V. or other Shell companies. Permission should be sought from Shell International B.V. before any part of this presentation is reproduced, stored or transmitted by any means.
SHELL EXPERIENCE BASE - LARGE SCALE CCS PROJECTS

- Quest
- Peterhead
- Gorgon
- Mongstad

- Barendrecht
- Draugen
- Dubai
- Zerogen
- Monash
- Longannet

Industrial scale projects operating
Industrial scale projects under construction
Industrial scale projects planned
Industrial scale projects stopped
GOING FORWARD – COMPLEXITY WILL INCREASE

Capture
- Company ‘A’

Transport
- Company ‘A’
- Company ‘A’
- Company ‘A’

Storage
- Company ‘A’
- Company ‘A’
- Company ‘A’

Simple
- ‘A’
- ‘B’
- ‘C’
- ‘D’

Complex
- ‘A’
- ‘B’
- ‘C’
- ‘D’
- ‘E’
- ‘F’
- ‘G’
RISK ANALYSIS: MUST CROSS THE FULL PROJECT LIFECYCLE

Pre-Injection
- Site Selection
- Characterisation & Baseline data collection

Injection
- Monitor to Verify Site Performance

Closure
- Monitor to Inform Site Closure Process

Post-Closure
- Minor Project Monitoring May Be Needed

Illustration: Benson 2007 WRI Presentation
CCS SEQUESTRATION WORKFLOW

Communication and Consultation
Company, Government, Regulator, Landowners

Site Characterisation
- Evaluate Storage Feasibility
- Select Storage Site
- Evaluate Site-Specific Storage Risks
- Characterise Geological Safeguards
- Select Engineered Safeguards
- Evaluate these Initial Safeguards
- Storage Risks Suitable?

MMV Plan
- Establish Monitoring Requirements
- Select Monitoring Plans
- Establish Performance Targets
- Identify Contingency Monitoring
- Identify Control Measures
- Evaluate these Additional Safeguards
- Storage Risks Acceptable?

Performance Review & Site Closure
- Evaluate Monitoring Performance
- Monitoring Performance Acceptable?
- Adapt Monitoring Plans
- Evaluate Storage Performance
- Storage Performance Acceptable?
- Implement Control Measures
- Site Closure

Performace Review & Site Closure
- yes
- no
- final yes
- continue
- yes
- no
- final yes
- continue
- no
- yes
Many independent containment safeguards in-place

Legend
- Passive safeguards; these are always present
- Active safeguards; these are only present when a decision to intervene is made triggered by monitoring information

Numbers
- Preventative safeguards: 34
- Corrective safeguards: 31

Migration along a legacy well
- Migration of CO2 or brine above the Upper Lotsberg Salt

Migration along a MMV well
- Hydrocarbon resources impacted

Migration along an injector
- Soil impacted

Migration along a matrix pathway

Migration along a fault pathway

Induced stress re-activates a fault

Induced stress opens fractures

Acidic fluids erode geological seals

Migration due to 3rd party activities

Numbers
- Preventative safeguards: 34
- Corrective safeguards: 31
Based on collective expert judgement
Informed by appraisal data and feasibility studies

<table>
<thead>
<tr>
<th>Risk Metric</th>
<th>Number of Safeguards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive safeguards</td>
<td>1 in 10⁴ per year</td>
</tr>
<tr>
<td>Active safeguards</td>
<td>1 in 10⁶ per year</td>
</tr>
</tbody>
</table>

- Unacceptable
- Tolerable
- Broadly Acceptable
MMV CONTRIBUTES TO RISK ACCEPTANCE

- Based on collective expert judgement
- Informed by appraisal data and feasibility studies

![Graph showing risk acceptance with passive and active safeguards.]

- Unacceptable: 1 in 10^4 per year
- Tolerable: 1 in 10^6 per year
- Broadly Acceptable
• Commercial operators can not bear unlimited liabilities
 • EU legislation proposes that operator will have to compensate for any leakage by providing emissions allowances, this could result in unlimited liabilities for operators.
 • There are uncertainties such as available technology/costs long term, scope of financial contribution for MMV at handover to government etc.
 ⇒ Solutions include capping the emissions allowance repurchase price at level agreed pre injection and agreement on MMV costs

• Commercial Operators can not bear indefinite liabilities:
 Recent legislation in some countries/areas of the world have planned a handover of storage liabilities to local authorities at some points, however:
 ⇒ Transfer needs to be effective / clear cut (cf. EU ambiguities).
 ⇒ Criteria for transfer need to be pre-agreed & achievable (“stable condition”).
Risk & Uncertainty needs to be addressed at every phase of the project.

Different stakeholders will focus on different risk elements:

- **Landowners** – HSSE, Containment
- **Government, Regulator** – HSSE, Containment, Capacity and long term liability
- **Proponent** – HSSE, Containment, Capacity, Injectivity, Financial, Long Term liability

An Industrial Scale Integrated project needs to address them all:

- **Site Selection** – Reduction/elimination/isolation from risk
- **Site Characterisation** – Reduction in uncertainty and remaining risk
- **MMV** – Risk monitoring and mitigation
- **Site Closure** – Risk Transfer