The Ginninderra greenhouse gas controlled release facility

Andrew Feitz
Section Leader
Geoscience Australia
CO2CRC

Carbon Sequestration Leadership Forum Monitoring Workshop
18 April 2013
GA-CO2CRC controlled release facility

- Collaboration between Geoscience Australia and the CO2CRC
- Hosted at CSIRO Ginninderra Experiment Station
- 800 hectares of cropping/grazing land
- 10km from centre of Canberra
- All year access
Location of horizontal well

CO₂ tank

Groundwater monitoring wells (baseline)
GA-CO2CRC Greenhouse gas controlled release facility, Ginninderra, ACT
Horizontal well and packers

- Based on ZERT facility
- 125mm \(\phi \) HDPE pipe x 120m long
- Slotted every 0.5m over 100m, installed 2m deep
- Six release chambers
- Sandy loams and clays with occasional coarse gravel
CO₂ supply

- 2.5t liquid CO₂ tank
- Maximum CO₂ capacity is 600 kg/d
- First sub-surface release – 100kg/d (over 5 chambers)
- δ¹³C of CO₂ ~ -18‰
 (source is primarily from an ethanol plant)
Pre-release: above ground experiment (2010)

60 kg CO$_2$/d
Atmospheric tomography (Bayesian inversion)

Continuous measurements of atmospheric temperature, and wind speed and direction in all three dimensions allowed characterization of plume dispersion.

Both CO₂ and N₂O were released simultaneously from a small area source to simulate a leak.

Atmospheric sampling at 8 points surrounding the release using University of Wollongong FTIR Trace Gas Analyser and 8 separate Vaisala CO₂ sensors.
Simultaneous localisation and quantification

CO_2 emission rate determined within 3%
Localisation determined within 1m
Scaling up: Atmospheric CO$_2$ sensor array (CO2CRC Otway Stage 2B)

- 9 - 15 t/d controlled CO$_2$ releases
- Sensors 150 - 470m from release pt
1st sub-surface release at Ginninderra (March – May 2012)

- Release rate 100 kg/d CO₂
- 8 x CO₂ (Vaisala GMP343) atmospheric sensors (solar powered, wireless network)
- 37 x 1m deep soil gas wells (8 surveys: CO₂, CH₄, C-13, N₂, O₂)
- Soil flux ~ 150 sample sites
- Eddy covariance (LICOR) tower
- Kr tracer (released in one chamber; soil gas, atmospheric samples)
- Electromagnetic survey (EM31)
- Soil community DNA analysis (0, 3, 15, 30m transect)
Wireless atmospheric CO$_2$ sensor array - Ginninderra
Soil flux

- Soil flux took ~4 weeks to stabilise
- Reasonable quantification
Soil gas vs soil flux

- Detected changes in soil gas after only 4 hrs, 15m from hot spot
- Considerable lag between surface expression of soil flux and sub-surface soil gas (1m deep)
- Detected Kr tracer in 1m deep well, 30m from horizontal well
- Surface CO₂ expression much less than sub-surface footprint (not “V” shaped)
Challenge: locating a surface leak

- Quantification ok, but finding leaks in the first place is tricky
- Model simulations suggest a diffuse leak (100mx100m) 1km from single atmospheric station needs to be ~50t/d before statistically detectable
- Point source ~ 20t/d at 1km

GA-CSIRO Arcturus atmospheric baseline station, Central Queensland
2nd release at Ginninderra (Oct - Dec 2012)

Focus on finding leaks using surface techniques (100 kg/d)

- Airborne hyperspectral
- Ground penetrating radar
- In-field phenotyping
- Electromagnetic surveys
- Walking around!
Flying around?

- UAV rotorcraft equipped with CO$_2$ sensor

Photo courtesy of Florian Poppa, ANU
Summary

• Important facility for testing concepts, technologies and approaches
• Results used as basis for up-scaling (e.g. atmospheric tomography, phenotyping, UAV)
• CO$_2$ surface expression less than sub-surface footprint (no “V”)
• Quantification techniques work but require significant processing
• Finding small surface leaks over large areas is challenging
• Looking for method cross-validation opportunities
Researchers

Charles Jenkins, Ulrike Schacht, Henry Berko, Steve Zegelin, Tehani Kuske, Richard Dunsmore, Jonathan Ennis-King, Ryan Noble, Andrew Feitz

Ray Leuning, Xavier Sirault, Jose Jimenez-Berni

David Griffith, Ruhi Humphries, Chris Caldrow

Andrew McGrath, Jorg Hacker

Uwe Zimmer, Florian Poppa

Laura Dobeck, Lee Spangler

With thanks to Phil Dunbar (CSIRO) and Field Engineering Services (GA)
CO2CRC Participants

Supporting Partners: The Global CCS Institute | The University of Queensland | Process Group | Lawrence Berkeley National Laboratory
CANSYD Australia | Government of South Australia | Charles Darwin University | Simon Fraser University